Using historical data to predict future events has many applications in the real world, such as stock price prediction; the robot localization. In the past decades, the Convolutional long short-term memory (LSTM) networks have achieved extraordinary success with sequential data in the related field. However, traditional recurrent neural networks (RNNs) keep the hidden states in a deterministic way. In this paper, we use the particles to approximate the distribution of the latent state and show how it can extend into a more complex form, i.e., the Encoder-Decoder mechanism. With the proposed continuous differentiable scheme, our model is capable of adaptively extracting valuable information and updating the latent state according to the Bayes rule. Our empirical studies demonstrate the effectiveness of our method in the prediction tasks.
translated by 谷歌翻译
躁动不安的多臂土匪(RMAB)是在不确定性下分配有限资源的框架。这是一个非常有用的模型,用于监测受益人和执行及时的干预措施,以确保在公共卫生环境中获得最大的利益(例如,确保患者在结核病环境中服用药物,确保怀孕的母亲听取有关良好怀孕习惯的自动电话)。由于资源有限,通常某些社区或地区会饿死可能带来后续影响的干预措施。为了避免在个人/地区/社区的执行干预措施中饥饿,我们首先提供了软性约束,然后提供了一种方法来强制RMAB中的软性公平约束。柔软的公平约束要求,如果选择后一个臂的长期累积奖励较高,则算法永远不会在概率上偏爱另一只手臂。我们的方法将基于SoftMax的价值迭代方法在RMAB设置中纳入设计选择算法,以满足提出的公平约束。我们的方法(称为Softfair)也提供了理论性能保证,并且在渐近上是最佳的。最后,我们证明了我们在模拟基准上的方法的实用性,并证明可以在没有重大牺牲的价值牺牲的情况下处理软性公平约束。
translated by 谷歌翻译
躁动不安的多臂土匪(RMAB)是一种恰当的模型,可以代表公共卫生干预措施(例如结核病,母性和儿童保育),反偷猎计划,传感器监测,个性化建议等方面的决策问题。 RMAB的现有研究为各种环境提供了机制和理论结果,其中重点是最大化期望值。在本文中,我们有兴趣确保RMAB决策对不同的武器也很公平,同时最大化了预期价值。在公共卫生环境的背景下,这将确保在做出公共卫生干预决策时公平地代表不同的人和/或社区。为了实现这一目标,我们正式定义了RMAB中的公平限制,并提供计划和学习方法以公平的方式解决RMAB。我们证明了公平RMAB的关键理论特性,并在实验上证明了我们所提出的方法处理公平限制,而无需在溶液质量上显着牺牲。
translated by 谷歌翻译
基于可解释的机器学习,提出了一种名为InterOPT优化操作参数的算法,并通过优化页岩气体开发来证明。InterOpt由三个部分组成:神经网络用于构建矢量空间中实际钻孔和液压压裂过程的模拟器(即虚拟环境);可解释的机器学习中的Sharpley价值方法用于分析每个井中地质和操作参数的影响(即单个井功能影响分析);并进行集合随机最大似然(ENRML)以优化操作参数,以全面提高页岩气发展的效率并降低平均成本。在实验中,InterOPT根据其特定地质条件为每个井提供了不同的钻孔和破裂计划,并最终在104井的案例研究中获得了9.7%的平均成本降低9.7%。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Automatic music generation with artificial intelligence typically requires a large amount of data which is hard to obtain for many less common genres and musical instruments. To tackle this issue, we present ongoing work and preliminary findings on the possibility for deep models to transfer knowledge from language to music, by finetuning large language models pre-trained on a massive text corpus on only hundreds of MIDI files of drum performances. We show that by doing so, one of the largest, state-of-the-art models (GPT3) is capable of generating reasonable drum grooves, while models that are not pre-trained (Transformer) shows no such ability beyond naive repetition. Evaluating generated music is a challenging task, more so is evaluating drum grooves with little precedence in literature. Hence, we propose a tailored structural evaluation method and analyze drum grooves produced by GPT3 compared to those played by human professionals, exposing the strengths and weaknesses of such generation by language-to-music transfer. Our findings suggest that language-to-music transfer learning with large language models is viable and promising.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably, the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility.
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译